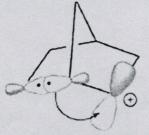
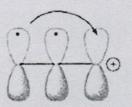

Chemistry 386J						
Anslyn						
Dec 7, 2013						
Exam 3						

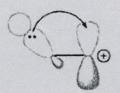
Name:	

1.	(6 pts)
2	(8 pts)
3	(9 pts)
4	(29 pts)
5	(13 pts)
6	(16 pts)
7.	(10 pts)
8	(6 pts)
9	(8 pts)
10	(8 pts)
11	(8 pts)
12	(8 pts)
13	(11 pts)

TOTAL (140 pts) _____

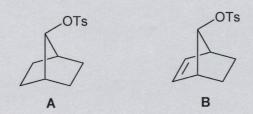

1. (6 points) Write the term that chemists use to describe the type of carbocation stabilization shown for the following examples:

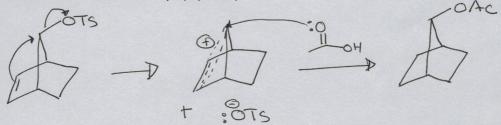

Homoconjugation


Anchimeric assistance

Nou-classical interaction

Resonance Fran


Hypercanjugation


Bridging halonismica

2. (8 points)

One of the following structures undergoes acetolysis 10¹¹ times faster than the other.

a) Which one is faster and why? (4 points)

B goes faster than A because B can be stabilized by a non-classical carbocation.

b) What stereochemistry would you expect in the products from A? Briefly explain your answer. (2 points)

A will present scramble stereochemistry due to traditional SU, pathway type mechanism. Inversion may be preferred due to jour pairing Formation.

c) What stereochemistry would you expect in the products from **B**? Briefly explain your answer. (2 points)

B will present retendion due to the Formation of non-classical carbocation, where the T system must be displaced by the acetate.

3. (9 pts) S_N1 solvolysis of this ^{13}C isotopically labeled allyl derivative results in scrambling of the starting material.

a) Draw the step(s) in the solvolysis that lead(s) to ¹³C scrambling. (2 pts)

b) Explain why it is observed that extent of scrambling is NOT dependent on the concentration of any added sodium acetate. (2 pts)

acetate and allyl cation form a contact ion pair.

Furthermore, nu: attack by solvent must occur faster than rate of addition of added acetate.

a cetate.

If the oxygen is ¹⁸O isotopically labeled, then the starting material can be scrambled as follows:

c) Draw the step(s) in the solvolysis that lead(s) to ¹⁸O scrambling. (3 pts)

d) Which isotopic scrambling would you predict occurs faster? (2 pts)

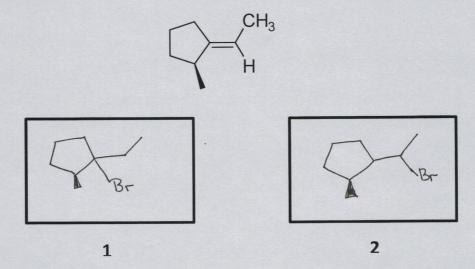
180 closer proximity to ion acetate is paired with

4. (29 points)

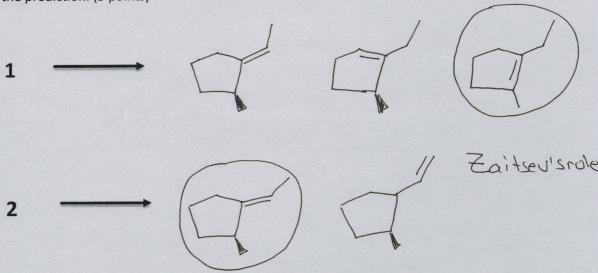
a) Write a mechanism for the hydrolysis of the acetal following a specific acid-catalyzed route. Show all arrow pushing. (10 points)

b) Now write a general acid-catalyzed mechanism for the same reaction. Show all arrow pushing. (10 points)

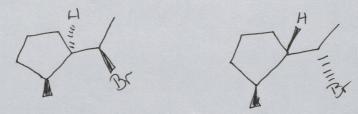
c) The hydrolysis of the following three structures either show specific acid, general acid, or no catalysis. Predict which corresponds to each mechanistic alternative and **explain** your answer. (9 points)


A will proceed through general acid catalysis because the intermediate will be stabilized by the TT system, thereby protonation occurs as the LCA departs.

B will proceed through specific acid catalysis because the LCT needs full protonation to be displaced, since the intermediate deem't have any assistance.


C doesn't need any catalysis since chloride is a very good LG, and the intermediate will be stabilized by the TT system.

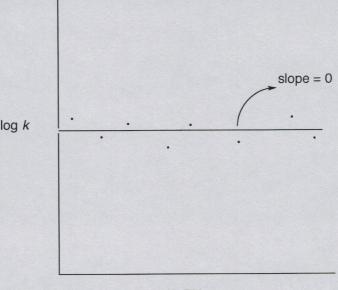
5. (13 points)


a) For an E2 reaction, draw the two different alkyl bromide regioisomers that would give the following product. Don't yet worry about showing stereochemistry. (4 points)

b) Draw all the possible alkene regioisomers that can be produced from the two reactants you gave in part "a". **Circle** the regioisomer that dominates and tell us which rule you used to make the prediction. (5 points)

c) Now, considering the appropriate stereochemistry, draw the possible alkyl bromide stereoisomers that will give the desired alkene from part "a". (4 points)

6. (16 pts) For the following elimination reaction:


a) Fill in the corners and axes on the More O'Ferrall-Jencks plot below (4 pts):

b) What is the effect of having a better leaving group on the position of the TS in the E2 pathway? Why does this make sense? (2 pts)

Less deprotonation Same LG departure

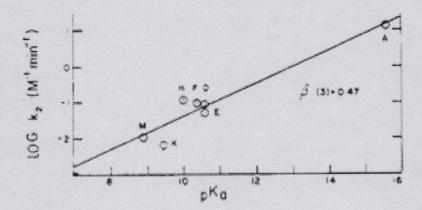
Better LG doesn't need as much deprotonation to leave

Suppose the plot of log k vs. pK_a BH⁺ of the above reaction gave a slope of zero.

pK_a BH⁺

c) What is the extent of deprotonation occurring at the transition state of the ratedetermining step? (2 pts)

slope = 0, zero deprotonation occurring @ RDS!


d) What does the slope indicate about the type of base catalysis of the reaction? (2 pts)

specific base

e) Which reaction mechanism, E1, E2, or E1_{CB} would give a slope of zero and kinetic dependence upon the base inasmuch as it only sets the solution's pH? (2pts)

E1_{CB}

However, when the experiment is actually performed, a plot of log k vs. pKa BH⁺ does **not** give a slope of zero. Instead, β =0.47, as shown below:

f) What effect does using a stronger base have on the extent of deprotonation at the transition state of the rate-determining step? (2 pts)

stays the same (47%)

g) What effect does using a stronger base have on the rate of the elimination reaction? (2 pts)

rate increases

- 7. (10 points) Predict the preferential face of nucleophilic attack to the carbonyl carbon using the following models.
 - a) Draw the preferential alcohol products of the nucleophilic addition using the Grignard reagents.
 - b) Using the template given, draw a Newman projection to support your answer.

A. Felkin Ahn Model

8. (6 pts, 2 each) Name the following cyclization reactions with the appropriate prefixes (number-endo/exo) and suffices (dig, trig, tet) and use Baldwin's table to determine whether or not each reaction is favored.

	Exo			Endo	
Ring size	dig	trig	tet	dig	trig
3	unfav	fav	fav	fav	unfav
4	unfav	fav	fav	fav	unfav
5	fav	Tay	fav	fav	unfav
6	fav	fav	fav	fav	fav
7	fav	fav	fav	fav	fav

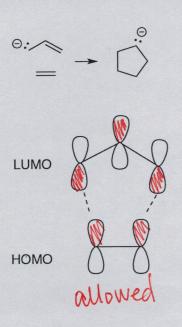
c)

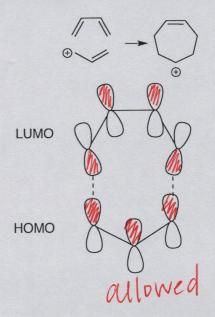
9. (8 points) The following two reactions are allowed. Label the two components appropriately to show that they obey the Woodward-Hoffman rules (i.e. σ^2 a, or the like).

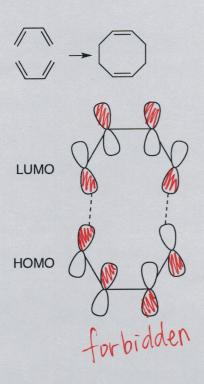
a)
$$\begin{array}{c}
1 \\
2 \\
7 \\
7
\end{array}$$

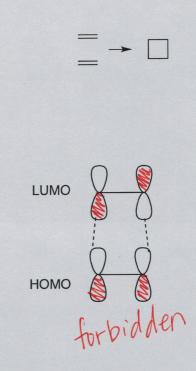
$$\begin{array}{c}
7 \\
7 \\
7
\end{array}$$

$$\begin{array}{c}
7 \\
7 \\
7
\end{array}$$


$$\begin{array}{c}
7 \\
7 \\
7
\end{array}$$


b)
$$R' \xrightarrow{\oplus} N + R \longrightarrow R' \longrightarrow R' \longrightarrow R$$


$$ATTS 2TTS allowed$$


$$D 1$$

10. (8 pts, 2 each) Use frontier molecular orbital theory (FMOT) to fill in the orbitals for the reactions below. Indicate whether the reaction is allowed or forbidden in the geometry shown.

11. (8 pts, 4 each) For the following electrocyclic ring opening reactions fill in the orbitals below that make the reaction allowed. Describe the orbital movements as conrotatory or disrotatory for each reaction. Finally, draw the allowed product with correct stereochemistry

Coutadiene)

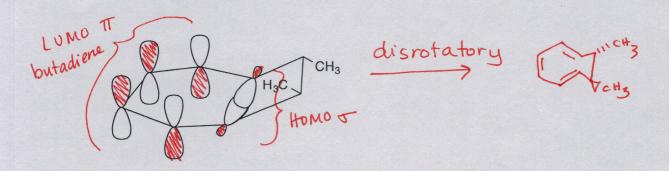
H₃C

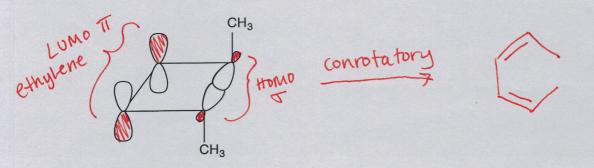
CH₃

Hono

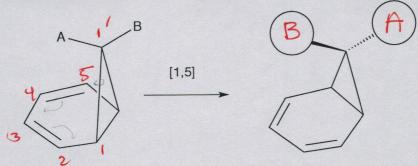
disnotatory

1 cH3

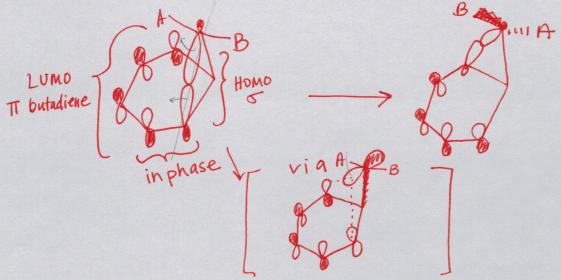

TONO TO CH3


Homo of CH3

conrotatory

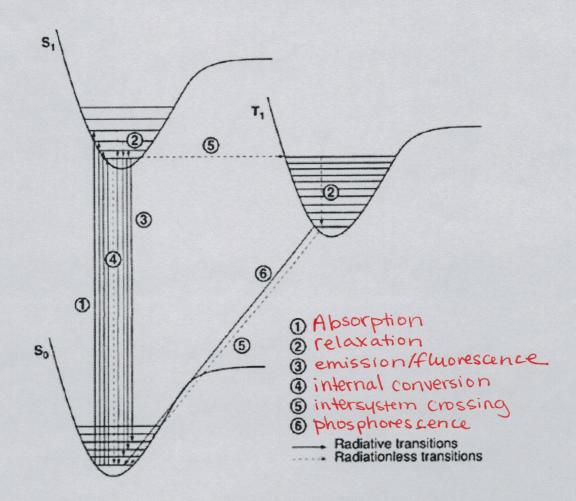

ALTERNATIVE ANSWERS

11. (8 pts, 4 each) For the following electrocyclic ring opening reactions fill in the orbitals below that make the reaction allowed. Describe the orbital movements as conrotatory or disrotatory for each reaction. Finally, draw the allowed product with correct stereochemistry

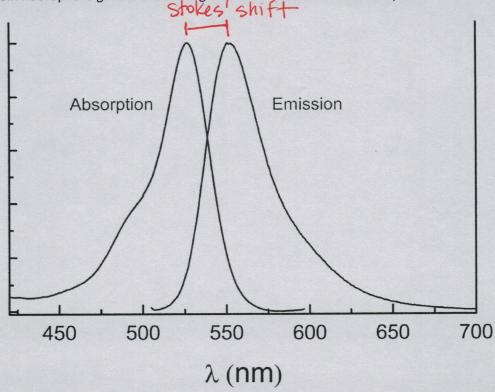


12. (8 pts) The cyclopropyl ring shown below can "walk" around the cyclohexyldiene ring by a series of [1,5] sigmatropic shifts.

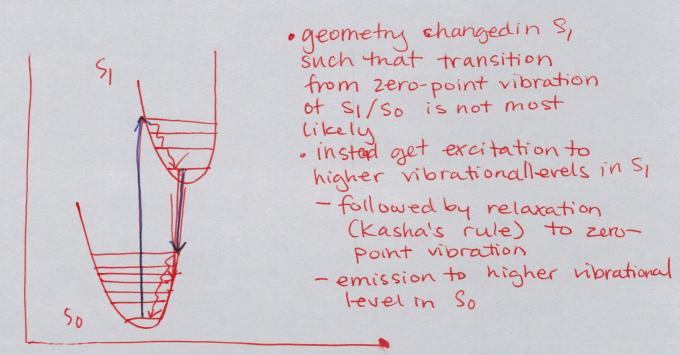
a) Draw the frontier molecular orbitals that control the sigmatropic shift shown above. (4 pts)



- b) Determine the orientation of A and B after the shown sigmatropic shift, and fill in the appropriate letters on the product structure above. (2 pts)
- c) Is the result from part b surprising? Why or why not? (2 pts)


expect stereoretention w/ [1,5] sigmatropic shifts although there is no third stereounter, position of A/B over ring face switches in this shift, perhaps unexpectedly.

13. (11 pts)


a) Write the name of the labeled transitions next to each number shown on the following Jablonski diagram (6 pts):

A certain fluorophore gave the following absorbance and fluorescence spectra:

- b) Indicate the Stokes' shift on the above absorption/emission spectrum. (1 pt)
- c) Using only S₀ and S₁, draw a Jablonski diagram below that shows the transitions that give rise to the different absorption and emission maxima. Label your diagram with "absorption" and "emission". (4 pts)

