Chapter 6

geminal

dihaloalkanes

NaC≡CR (E)

 H_2/Pd , Pt, Ni Na/NH₃ (G)

alkanes

Chapters 6 7

HX (A)

haloakanes

Chapters 6 7 8

- (N) For 2° alcohols
- (0) Regiochemistry: the product with the more substituted alkene predominates

Chapters 6 7 8 9

Chapters 6 7 8 9 10

ROADMAP FOR REACTIONS Chapters 6 7 8 9 10 11

- (A) Regiochemistry: Markovnikov addition to a π bond
- (B) Stereochemistry: anti-addition
- (C) Regiochemistry: non-Markovnikov addition to a π bond
- (D) Stereochemistry: syn-addition
- (E) Works well for methyl and 1° haloalkanes
- (F) Stereochemistry: gives cis-alkenes as products
- (G) Stereochemistry: gives trans-alkenes as products
- (H) Reactivity of C–H bonds follows $3^{\circ} > 2^{\circ} > 1^{\circ}$
- (I) Works for methyl, 1°, and 2° haloalkanes
- (J) Works for 2° and 3° haloalkanes, may see rearrangements
- (K) Works for all haloalkanes except methyl, although a bulky (non-nucleophilic) base must be used for 1° haloalkanes. Regiochemistry: follows Zaitzev's rules so the more substituted alkene predominates. Stereochemistry: requirement for the X and H to be eliminated with anti-periplanar geometry.
- (L) PBr₃ and SOX₂ works for methyl, 1°, and 2° haloalkanes. HX can give rearrangements.
- (M) For 1° alcohols
- (N) For 2° alcohols
- (0) Regiochemistry: the product with the more substituted alkene predominates

Chapters 15 16

ROADMAP FOR REACTIONS Chapters

15 16 17

ROADMAP FOR REACTIONS Chapters 15 16 17 18

Chapter 19

Chapters 20 21

Chapters 20 21 22

