Logic Flow of Chapters 7 and 8

Understanding Kinetics

- 1) Real reaction coordinate diagram are multi dimensional
- 2) Our normal 2D plots are slices were the reaction coordinate is defined as a vibrational mode undergoing a significant change during the reaction
- 3) The rate determining step is the step with the highest barrier on the reaction coordinate
- 4) Rate constants reflect the intrinsic ability of a reactant to achieve the TS for the rate determining step:
 - a) Large barriers are slow reactions and have small rate constants
 - b) Small barriers are fast reactions and have large rate constants
- 5) The transition state is really a saddle point on the multi-dimensional surface
- 6) The TS we usually discuss represents the lowest energy strained structure that transitions to product, but there is really a distribution of TSs that go over the col
- 7) The Eyring equation can be used to relate rate constants to activation parameters: Gibbs free energy, enthalpy and entropy
- 8) Most all reactions have positive enthalpies of activation, but the entropies can vary

Postulates

- 1) Hammond Postulate
- 2) Reactivity vs Selectivity
- 3) Curtin-Hammett Principle
- 4) Microscopic Reversibility
- 5) Kinetics vs. Thermodynamic Control

How to Perform Kinetics

- 1) Order of the reaction, and order per reactant
- 2) First order kinetics
- 3) Pseudo first order kinetics (try to get everything to fit this)
- 4) Steady State Approximation for reactive intermediates
- 5) Pre-Equilibrium kinetics
- 6) Looking to see how variations in the denominator of the kinetic expression makes the order in reactants vary
- 7) Looking for order in reactants to determination if that reactant plays its role prior to, at, or after the rate determining step
- 8) Steps in a mechanism after the rate determining step are not kinetically observable

Calculating Rate Constants

- 1) Marcus theory
- 2) Marcus equation

Back to Multi-Dimensional Reaction Coordinate Diagrams

- 1) Competing reactions are displaced on a 3-D surface with intermediates at the corners
- 2) A projection of the 3-D surface onto a 2-D surface is a More O'Ferrall Jencks plot
- 3) Ues the Golden Rules to predict TS structure as chemical parameters change
- 4) Changes in chemical parameters often lead to counter-intuitive changes in TS structure
- 5) Visualizing enthalpy and entropy changes on a 3-D reaction coordinate diagram

Isotope Effects

- 1) Check to see if a particular bond to an atom breaks at or before the rate determining step, usually a bond to H
- 2) Isotope effects arise from significant differences in any vibrational modes upon isotopic substitution, usually bond stretches
- 3) Kinetic isotope effects can be primary, secondary and normal, inverse
- 4) The more thermal neutral a reaction is the larger its isotope effect
- 5) Secondary effects arise from hybridization changes, which are dominated by out-of-plane bending mode changes

Substituent Effects

- 1) Field, inductive, resonance, polarizability, solvent, steric effects
- 2) LFREs are quantitative measurements of substituent effects
- 3) Hammett plots are used for quantitative comparisons of inductive and resonance effects between substituents and between reactions
- 4) Taft parameters are used for comparisons of polarity and sterics (we do not cover this)
- 5) Grunwald-Winstein plots are used for comparisons of solvent polarity and sensitivity of reactions to solvent polarity
- 6) Swain-Scott plots are used for comparisons of nucleophiles and sensitivity of reactions to nucleophiles
- 7) Nucleophilicity is a balance of basicity, shape, and polarizability
- 8) Sensitivity to nucleophility and leaving group ability is measured with Bronsted plots
- 9) LFERS work because of entropy/enthalpy compensation

Handful of Other Experiments

- 1) Product identification
- 2) Trapping intermediates
- 3) Competition experiments
- 4) Cross-over experiments
- 5) Isotope scrambling
- 6) Radical clocks
- 7) Transient spectroscopy
- 8) Stable ion media